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ABSTRACT 

For an input-to-state mapping of a polynomial one-dimensional control 

system we study the geometry of critical and near-critical controls, trajec- 

tories and values. Quantitative bounds, depending only on the degree of 

the polynomial involved, are obtained. Examples are considered, showing 

these bounds to be essentially sharp. 

1. I n t r o d u c t i o n  

In this paper we start a detailed presentation of the results, announced in [1], [3]. 

Consider a control problem of the form 

=/(~,~), ~(o)=~ °, 

(1) where x E R " ,  u( t )  E U C R m, with U a compact subset of R m. 

Let T > 0 be fixed. The input-to-state mapping 7" : u --* x u ( T )  of (1) asso- 

ciates to each control u : [0, T] ---* U the state T ( u )  = x~ (T ) ,  to which u steers 
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the system from the initial state x ° in time T. (x~(t) denotes the corresponding 

solution of (1).) 

The study of the geometry of this mapping and, in particular, the geometry of 

the closure fiT of its image (the time T-reachable set of (1)) is one of the central 

problems in control theory (see, e.g., [13-17]). Of particular importance are the 

boundary points of fiT, and the corresponding extremal trajectories. 

It is well-known that the behavior of extremal trajectories can be very compli- 

cated. They may have an infinite number of control jumps in a generic way ([8]), 

the time reachable set ~T may have an infinite number of "holes" ([10]), etc. 

In [1], [3] we started the study of a special class of trajectories, which we 

call extremal (near-extremal, respectively) of rank zero. Geometrically, these 

trajectories lead to the "vertices" (the points of a high curvature, respectively) 

of the boundary Of IT. 
Alternatively, the (precisely) extremal rank zero trajectories can be character- 

ized as follows: for such a trajectory xu(t) there is not direction in R" in which 

we can move the endpoint xu(T) by infinitesimal control variations both in this 

direction and in the opposite one. 

The rank zero trajectories have some important properties, which are not 

shared by general extremal trajectories: 

(i) The translation of the rank zero property into the local behavior of x~(t) (in 

the spirit of the maximum principle) produces strong necessary conditions, 

not involving dual variables. Consequently, rank zero trajectories follow 

certain "algebraic" patterns in the phase space. 

(ii) In many cases the phase space can be, in fact, subdivided into a finite 

number of parts, and any rank zero trajectory can visit each of these parts 

at most a finite (and effectively bounded) number of times. 

In particular, in these cases only a finite number of "essential" control jumps 

are possible. 

The conclusion for a time T reachable set is that the set of its vertices is finite. 

Near-extremal trajectories appear quite naturally as a result of a "finite accu- 

racy relation" of extremality conditions: an extremal trajectory is characterized 

by impossibility to move the endpoint infinitesimally in certain directions. For a 

corresponding near-extremal trajectory the infinitesimal control action in the for- 

bidden directions must be small (but, possibly, nonzero). Below we give precise 

definitions for near-critical (instead of near-extremal) trajectories. 
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The study of near-critical trajectories is important from theoretical and applied 

points of view: only near-criticality can be effectively imposed or verified in 

computations with finite accuracy. 

The behavior of near-critical trajectories is much more complicated than of 

critical ones, since the control may cover subsets with the nonempty interior in 

the phase space. However, we show that the algebralcity and finiteness of rank 

zero critical trajectories are preserved for near-critical ones "topologically": 

(a) Two rank zero near-critical trajectories which are of the same topological 

type (in a proper sense) are in fact close to one another. 

(b) A topological type of trajectory is determined by a finite number of choices 

of the control behavior. 

As an ultimate result we obtain that the set of the endpoints of rank 0 near- 

extremal trajectories (in particular, the set of high curvature points on a~V) is 

small. 

In [1] and [3] only statements of the results and some sketches of the proof 

are given. In the present paper we start the detailed presentation and the proof 

of these results, in the simplest situation: we consider one-dimensional control 

systems and allow only Lipschitzian controls. However, the analysis and the 

geometry of this simplest case reflect the difficulties of a general situation, and 

the techniques, developed in this paper, form an important ingredient in [4], [5], 

where we treat higher-dimensional cases and discontinuous controls. 

Also, the notion of an extremal trajectory we replace here by a closely related, 

but somewhat simpler notion of a critical one. 

Critical controls are those u(t) for which the differential dT~ of the input-to- 

state mapping 7" of (1) vanishes. (We assume controls to belong to the space 

W = LP[O,T],p > 1. Under this assumption 7" is Fr~chet differentiable at any 

u E W; see, e.g., [14], [6].) A corresponding trajectory x~(t) is called a critical 

trajectory and x~(T) = 7"(u) E llt" is called a critical value of 7". 

Near-critical controls, trajectories and values are parametrized by 3' >- 0 : u is 

called 7-critical if ][dT"~[[ _< 7. x~(t) and xu(T) = T(u)  are called a 7-critical 

trajectory and a "),-critical value, respectively. 

Critical trajectories are those, along which the linearized system is not com- 

pletely controllable. They are intensively studied (see [13], [14]). For example, 

the control strategy described in [13] applies first a relatively simple "open loop" 

control generator to steer the system approximately into the desired state. To 
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regulate for small derivations one uses then linear control design techniques for 

a linearized system along the initial trajectory. But to regulate successively one 

needs this trajectory to be not only nonsingular (completely controllable) but  

to be "far away" enough from singular ones: in numerical computations very 

small jacobians and zero jacobians are indistinguishable. The situation is qui~e 

similar in any application where finite accuracy computations are involved (see, 

e.g., [101). 

Our results provide exactly this type of "quantitative" information. They show 

~hat under certain conditions the set of near-critical values is small. Hence, for 

,7~-~ost of the states, any trajectory leading to this state is well separated from 

¢,r~g~lar ones. 

Let. Wk C_ W = LP[0, 1] be the set of K-Lipschitzian controls u(t) with [u(t)[ < 

~,t E [0,1] (we put T = 1). Denote by A(T ,7 )  the set of all -r-critical values 

of 7" on WK. Let n = m = 1 and let f(z,  u) in (1) be a polynomial of degree 

a, if(x, u)l < i for lul < 1, < 1. 

THEOREM 1.1: For any K > 0,7 >__ 0, V ( T , 7 )  can be covered by Cl(d) interva/s 

of length C2(d,K)7 q/(q+~) (1/p + 1/q = 1), where 

C1 (d) = 8Sd622(d+l)~, 

C2(d, K)  = 4ed'[(q + 1)d4(1 + K)e2qd'] l/¢q+l). 

In particular, the number of critical (7 = 0) va/ues of 7" on [.JK>0 WK does not 

exceed Cx(d). 

In section 4 below we give examples showing these estimates to be essentially 

sharp. 

The result of Theorem 1.1 concerns the question of validity of Sard's theo- 

rem and its quantitative version ([12], [191) for a mapping 7". This question 

is important since Sard's theorem and its extensions provide a powerful tool in 

nonlinear analysis. On the other hand, the extent to which Sard's theorem-like 

results are satisfied for a certain mapping measures the complexity of this map- 

ping (see [18]). While generally fine in smooth finite-dimensional situation, these 

results are usually violated for infinite-dimensional spaces, even for C°°-mappings 

([71, [18]). The known exclusions are rare: Fredholm mappings and variational 

problems with "finite index", for which the problem is, essentially, reduced to a 

finite-dimensional one, seem to be the only known general examples. Some new 

examples are given in [18]. 
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The input-to-state mapping 7" of (1) does not belong to the above classes. 

However, Theorem 1.1 shows that for n = 1 and f a polynomial, Sard's theorem 

and its quantitative extension are true. 

An overexponential growth of C1 (d) in d reflects a high complexity of the 

mapping 7". According to the "approximative complexity" approach of [18] it 

indicates a possibility to find "almost analytic" one-dimensional control problems, 

for which Sard's theorem is violated. Such examples are indeed constructed in 

[2]. 

In section 2 we state the main result in a slightly generalized form, discuss a 

simple example and outline the techniques used. In section 3 proofs are given. 

Finally, in section 4 we show our bounds to be sharp, considering corresponding 

examples. 

2. Statement of  the Main Results ,  Examples,  and Outline of  Proofs  

We consider non-linear one-dimensional control systems 

~(t) =f(z(t),u(t)),  x(O) = zo, 

where x(t) E R and u(t) E R is the control, at time t E [0, 1]. 

Let W be a space of admissible controls, consisting of Lipschitz functions on 

[0, 1]: 

W =  U WK, 
K>0 

where for K > 0 

WK = {u(.) lu(t2)- u(tl)t <_ Kit2 - t l] ,Q,t2 • [0, 1]}. 

We define a functional J: W E R by 

(1) J(u( .))  = . (1)  

where x(.) is a solution of a differential equation 

(2) i = f ( x ,  u(t)),  x(0) = .0 ,  t e [0,1]. 

Below we make assumptions, sufficient to guarantee the existence of solutions 

(2) for t e [0,11. 
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A pair (x(.), u(.)) is called an admissible trajectory. Geometrically, an admis- 

sible trajectory is a parametric curve in the (x, u) plane. 

Definition 1: A control u(.) is called critical, if 

DJ, =_ O, where DJ~(v) = lim l [ j (u  + av) - J(u)]. 
¢~ --*00L 

(Compare with the conditions for the Fr6chet differentiability of J ,  given in [14].) 

Let x(t, a) be a solution of the equation 

= / ( ~ , , , ( t )  + ,~( t ) ) ,  x(0) = zo, 

where a is a parameter. Then 

DJ,(v) = 0~-~(1, 0). 

But the derivative with respect to the parameter z(t) = cOx/Oa is the solution of 

a linearized equation 

dz Of (z(t),u(t))z + ~u(X(t),u(t))v(t), z(O) = O. 
a t  - 

(3) 

Then 

(4) 

where 

1 

z(1) = DJ,(v) = F(1) / F-I(r)  ~u (x(r),u(r))v(r)dr, 
0 

[ Of dr F(t) = exp ] 

0 

is the solution of a homogeneous equation 

d z  ~( 
- -  = x ( t ) , ~ ( t ) ) z .  
dt 

From this we immediately obtain the following: 

COROLLAaY 1: A control u(.) is critical if and only if 

Of (x(t)) =0,  t e  [0,11. 

The space of admissible controls W can be considered with various norms. In 

this paper we consider only the Lp-norms on W, but the following definition 

makes sense for any fixed norm I[ I[ on W: 
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Detlnltlon 2: A control u(-) is called 7-critical, if IIDJu]l <_ 7. | 

Now we fix the notation: Let 7'1 > 0 and T2 > 0 be fixed. 

(1) ~ (J ,7 )  C_ W is a set of 7-critical controls for which the curve (x(.),u(-)) 

lies in the rectangle D = {Ixl -< :/'1, lul _< 7"2}; 

/r~(J,7) = J (E(J ,7) )  C_ R is the set of 7-critical values of the functional J 

on ~ (J ,7 ) ;  

(2) 

(3) 

oi+J f 
Mij = % ~ x l ~ l ,  

• Oi+Jf 
mij = m~n I~1,  

0-< i , j  -< 2; 

O <_i,j _<2; 

( °' ) 
• ~) = ( ~ , u ) l l ~ ( ~ , u ) l  = 7  , 

°,:, = ~ u ) l _  , 

o ,  i = 1 , 2 , 3  

We will always assume ]u(t)] _< T2 • The following (not very restrictive) as- 

sumption guarantees that any solution of (2) stays in D (and, in particular, 

exists) for t e [0, 1]: 

Ix01+ Moo < T1. 

norm II 11 on W be chosen as the Lp-norm Ilull, = (f: lu(t)l'dt) 1/p 
Let the 

We also assume that the controls u belong to WK, for a fixed K > 0. 

Now we can state our main result: 

THEOREM 1: Let f (x ,u)  be a polynomied of degree d. Then for any 3' > 0 the 

set 2X(J,7) _C R can be covered by N(d) = 83d622(d + 1) 2 interva/s of length 7', 

where 7 ~ = C7 q/q+l, 1/p + 1/q = 1, and 

C = 4T2e Ml°. [(q + 1)(M00Mll + Mo2K)eq(ml°+Ml°)] 1/q+l. 
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COROLLARY 2 (Sard's theorem): Under the above assumptions, the number of 

critical va/ues of J on any WK does not exceed N(d). 

To prove the corollary it is enough to apply Theorem 1 with 7 ~ 0. 

The bounds given by Theorem I and Corollary 2 are essentially sharp, as the 

examples in section 4 show. 

Remark: The overexponential growth with the degree d of the covering numbers 

for critical values of polynomial control problems has important consequences 

for control problems with only smooth f .  In particular, examples with f and 

controls of class Coo, where Sard's theorem is not true, are abundant. In the 

following, we plan to present some of these examples, as well as an investigation 

of the "approximative complexity" of the control problem (2) in the spirit of [18]. 
| 

Now consider the following example, which, though simple, illustrates our ap- 

proach in restricting the class of admissible controls, as well as the techniques 

used in proofs. Consider the following system: 

(5) 

Then 

{ ~ = u 3 - 3 u ,  x(0) = 0 ,  
t ~ [0,1], z , u  ~ R. 

1 

J(u) = / [ u 3 ( t )  - 3 (t)]at. 
0 

A control u is critical for J iff f,, = 0 along the corresponding trajectory. Thus 

any u which assumes only the values - 1  and 1 is critical for (5). Now for controls 

-1 ,  0 < t < r ,  
u r =  1, r < t < l ,  

r E [0,1], J(uT) = 4r - 2, and hence critical values of J cover the interval 

[-2, 2]. (Notice that J is differentiable in any Lp-norm on the control space, 

p > 1 (see [14]), and J is C°°-smooth in Zoo-norm (see, e.g., [6]). The above 

family Ur, r E [0,1], forms a continuous non-rectifiable curve in any Lp-norm, 

1 < p < oo. If we require controls u to be continuous, then there are only two 

critical controls u = - 1  and u = 1, with the corresponding critical values 2 

and -2 .  But any control, switching from - 1  to 1 in a sufficiently short time, is 

almost critical (the Lp-norm of dJ at such controls is of order ~l/q, where/f is 
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the switching interval and lip + 1/q = 1). Hence, for any 7 > 0, the 7-critical 

values of J on the space of continuous controls cover the interval [-2,  2]: all the 

controls u of the form 

- 1 ~ - ]  1 

are 7-critical, if the switching is fast enough. 

Now assume that the slopes of admissible controls are bounded by K.  Then the 

switching time from - 1  to 1 cannot be less than 2/K, and therefore I[DJ(u)ll, > 

(2/K) 11q, if u switches from the neighborhood of - 1  to a neighborhood of 1. 

Hence for 7 -< (2/K) llq, anY 7 -critical control must stay either near - 1  or near 

1. Respectively, 7-critical values will form two intervals around - 2  and 2, of size 
.., 71/q+ 1" 

This example illustrates one of the basic geometric observations in our ap- 

proach: assuming controls to be K-Lipschitzian, we can guarantee any ")'-critical 

trajectory to lie in a set Iful -< 3'1, where 71 depends on K and 7, and tends to 

0 as 7 ~ 0 (see Proposition 1 below for detailed computations. In example (5) 

this set consists of two horizontal strips around the lines u = - 1  and u = 1). 

Now the second main geometric ingredient in our approach is based on real 

algebraic geometry. For f(x,u) a polynomial, the set _~,~(a) = { ( x , u ) l l f . ( x , u ) l  _< 

3'1 } is defined by polynomial inequalities, i.e. it is semialgebraic. Using metric 

properties of semialgebraic sets, obtained in [11], we show that any two "/-critical 

trajectories, which are topologically equivalent as curves in if(l), are, in fact, 

71-close to one another. (See Definition 1, Lemma 1 and Lemma 2 below. In (5) 

two trajectories are topologically equivalent if and only if they lie in the same 

strip.) 

This reduces the problem of bounding the geometry of 7-critical values to the 

topological (combinatorial) problem of classifying topologically different curves 

in (I). r. Here we use real algebraic geometry once more: namely, the bounds for 

the topological structure of real semialgebraic sets. 

Notice also that if we adopt another definition of critical controls, requiring 

also vanishing of the derivative of J with respect to the jump moment of u, then 

the controls u~ above are no longer critical, except for r = 0 and v = 1. 
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3. P r o o f  o f  T h e o r e m  1 

Assume, as above, that the Lp-norm II lip is chosen on W, and that all the 

controls considered belong to Wk for a fixed K > 0. 

PROPOSITION 1: I f  u(.) E ~(J ,  7) and7 < C1, then for every t E [0,1] and p > 1 

it holds that 

I~-~uOf (x(t),u(t)) < C2.y q/(q+l), 

where 1/p + 1/q = 1 and the constants are 

[e_q(mlo+Mto) ] 1]q 
C1 = L 2 q + 2  J 

Proof'. The function 

andC2 = [(q+ l)(MooMn + Mo2K)cq(rat°+M'°)] 1/(q+1). 

~(t)= ~(x(t),u(t)) 
is Lipschitz on [0,1] with a constant K1 = MooMll + Mo2K. Set 

M = maxe(t)  = e(to) 
[o,1] 

and consider the function 

M - K i l t  - tot ,  
~ l ( f )  = O, 

It - tol  _< M/K1, 
It - tol  > M / K 1  . 

It is obvious that el (t) < e(t) on [0,1]. Then 

1 1 

I[DJuHq = F(1) q f ]F-I(T)~U (X(T),U(T)) qdT > C /[gl(T)]qdT, 
o o 

where C = e - q ( m l ° + M l ° ) .  If M > K1/2 then 

1 / 2  

IlKJul[ q >_ C (Klv)qdr - 20+1)(q + 1) 
0 

g~. 

Hence for 7 sufficiently small, namely 

7 <  C1, c, 
2 '  
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it follows from HDJ,,H < 7 that M < K1/2. Let now 3' < C1 and IIDJ,,II < 7. 
Then for to > 1 we have 

t~ C M q+ l 
7 q > ]]DJ,[Iq > C [M+ga(r- to)]qdr  = --,=---,gl(°4-1~" 

to-M/K1 

The same bound holds for to < 1/2 and thus 

M <  [Kl(q+ l)] C It 

COROLLARY 2 : F o r 7  < Cl and u(.) E ~(J,"y), it holds that 

( x ( . ) ,  , , ( . ) )  E = "Yl ' ~1 

From now on we shall assume that f(x, u) is a polynomial of (total) degree d 

in x and u. Then the sets if(i) are defined by polynomial equations (inequalities) 

in the (z, u)-plane. 

The following two results are well-known (see, e.g., [11]): 

PROPOSITION 2: The number of connected components of q,~i),i = 1,2,3 is 

bounded by a constant N(d) = (d + 1)(2d + 2) depending only on d, the degree 

of the polynomial f.* 

PROPOSITION 3: For a polynomial Of /Ou of degree d - 1 the number of the 
critical values (i.e., the values of Of /Ou at points where grad Of /Ou = O) does 
not exceed (d - 2) 2. 

In what follows we can assume, without loss of generality, 7 to be a regular 

value of the polynomial Of/Ou, and hence the connected components of ~2)  to 

be smooth curves. 

The following Definition 3 and Lemmas 1 and 2 form our main tool to study 

the geometry of ",/-critical trajectories. 

* One can get better bounds in Propositions 2 and 3, and Lemma 1, using specific 
two-dimensional considerations, in particular, Harnack's theorem. 
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Detlnition 3: For any point (.~, fi) E (~(~) define the set D-r(~, , fi) as follows: 

(x, u) E D-t(~, fi) if there is a piecewise smooth curve L in the (x, u)-plane con- 

necting the points (~', fi) and (x, u) and satisfying the conditions: 
(a)  L (~_ ~(fl), 

(b) L consists of vertical segments x = xi and smooth curves u = si(x), xi _< 

X < ~i+l ,  

(c) for any ~ E [£', x], ~ # xi, the line z = ~ intersects L at one point. If the 

conditions (a), (b), (c) hold, we call L a curve of type A. 1 

LEMMA 1: If(x,  u) E DT(x,u ) then there exists a curve L~ of  type A connecting 

the points (z, u) and (~, 3) and such that: 

(a) the number of vertical segments is at most  N4(d) where Na(d) = (2d - 

1)(4d - 3) + 2; 

(b) the smooth curves u = ei(x), xl < x < xi+l, are segments of  the boundary 

of  the set (~(1). 

Proof: Let L be a curve of type A connecting the points (Z,3). Suppose that 

x > ~. For any ~, ~ < ~ _< x, consider the biggest vertical segment whose lowest 
,g(1) 

point is on the curve L and which is contained in =7 . 

The upper points of all such segments form a piecewise continuous curve L, 

consisting of parts of the boundary of (~(1) (see Fig. 1). By fitting in vertical 

segments in the cuts we obtain a piecewise smooth curve L1. Each vertical 

segment which connects the cut points for • < xi < x has at least two common 

points with the boundary of (~(1). Let M1 = (~, 17) be the closest (along the line 

x = ~) such point to the curve L. Then the vertical line x = ~ is tangent to (~(2) 

at point M1. We show that the number of such vertical tangents is bounded in 

terms of d. 

/ . / . ~  L 

Fig. 1 



Vol. 78, 1992 P O L Y N O M I A L  C O N T R O L  P R O B L E M S  269 

The coordinates of M1 E D satisfy the equations 

= 0. O~ f 
1 I = "1, au= 

The number  of connected components of the set 

A = ~  2) n (Ou2 =0 

is at most  ( 2 d - 1 ) ( 4 d - 3 )  [11]. Let C be one of such components and x = z(t) ,  y = 

y(t) its parametrization.  Since 7 is a regular value of Of/Ou (gradOf/Ou # O) 

and 02 f /Ou 2 = 0 we have k(t) = 0. Hence for any component of A the x 

coordinate is constant and the number of vertical tangents is at most (2d - 

1)(4d - 3d). Then N4(d) = (2d - 1)(4d - 3) + 2. I 

L~MMA 2: Let (z(-), u(.)) and (y(.), v(.)) be two admissible trajectories such that 

/'or any t E [0,1] 

(y(t), v(t)) E D.f(z(t),  u(t)). 

Then 

ly(t) - x(t)l _< 2T:M'°'Ns(d)7 
where Ns(d) = 8d 2 - 9d + 4 and Mlo, T2 as in Definition 2. 

Proof: Let L be a curve as in Lemma 1 that connects the points M = (x(t),  u(t))  
! ts  

and m = (y(t), v)t)). Denote Ni, N i the ends of the vertical segments of L. Then 

(1) N "  If(M)-f(-M)l < ~ If( i )-f(U[)l+~-'].(2)lf(xi+, ~i(xi+,))-f(xi,ei(xi))l. 
i i 

Lagrange's theorem provides the inequality 

Y~ ( ') lf(N~ ' )  - f(N~)l _< 7" 2T2. N4(d). 
i 

On each smooth segment u = el(x), zi <_ x <_ xi+l, we have: 

x i+ l  

asl 

Zi-~l 

< M, olz,+l - z i l  +3' f Idd~)ld5 
xl  
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In the second summand,/ '~ '+ '  le~(~)ld~ is the variation of ¢i(x). It is known that O'Z4 

for a continuous function ¢i 

1:i+ 1 M i  

V (ei) = / Ni(r/)&/, 
z l  m l  

where mi = minei(x), Mi = maxei(x) and NiO1) is the number of roots of the 

equation ei(x) = 7/. Since the curves ei(x) are parts of the boundary of ~(7 O, for 

m y  171 < T2 we have ~ ,  N,(~)  < d - 1. Then 

z i + t  

t 
z i  

and 

y~ (2)if(xi+,, Ei(Xi+l )) - -  f (x i ,  ei(xi))l < M10 Iv(t) - x(t)[ + 2T2(d - 1)3'. 

Thus for Ax(t )  = y(t) - x(t), t E [0, 1], the following differential inequality holds: 

[A~(t)[ < M, olAx(t)l + 2T2Ns(d)7 , Ax(O) = O, 

where 

Ns(d) = N4(d) + d - 1 = 8d 2 - 9d + 4. 

But then we have 
lAx(t) < 2T2Ns(d)eM'°t 7. II 

Definition 4: An admissible trajectory (x(.), y(.)) is said to be of the first type 

if the derivative k(t), t E [0,1], does not change its sign. Otherwise it will be 

called an admissible trajectory of the second type. II 

We denote by ~ l ( J ,  7) the set of all 7-critical controls u(.) E ~(J,  7) such that 

(x(.), u(.)) is of the first type. Let /~1(J, 7) = J ( ~ ( J , 7 ) ) .  

Definition 5: Two controls u(.),v(.), defining the admissible trajectories 

(x(.), u(-)) and (y(.), v(.)) of the first type, are said to be in the same component 

of ~ l ( J ,  7) if for any vertical line x = c which intersects both curves (x(.), u(.)) 

and (y(.),v(.)) at points PI and P2 respectively, the segment [P1,P2] C_ ~,(1). 

| 
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LEMMA 3: Let u(.) and v(.) belong to the same component of.~l(J,'7). Then 

for any t E [0, 1], (y(t), v(t)) E D~(x(t), u(t)). 

Proof." Assume that y(t) >_ x(t). Let P1 and P2 be the points of intersection of 

the two curves with the line x -- x(t). The curve L, required in Definition 3, is 

given by a vertical segment [P1, P2] and then by a part of the second curve from 

P2 to (y(t),v(t)). | 

From Lemma 2 we obtain the following: 

COROLLARY 3: For any two controls u(.), v(.) which belong to the same compo- 

nent o~ ~ ( d, 7 ), 
l J (u ) -  J(v)l _< 2T2eM'oNs(d)7. 

THEOREM 2: The set ;Xl(J, 7 ) can be covered by N6(d) intervals of length 

4T2eM'°71, where 

")'I ---- O2"/q/(q+l) and N6(d) = Ns(d) [N4(d)  -[.- 112, 2 N3(d) _( 83d622(d+l)'. 

Proof." Let u(.) E ~q(J,7).  Then by Corollary 2 (x(.), u(.)) E (~1). By Corollary 

3 it is enough to prove that E l ( J ,7 )  consists of at most [N4(d) + 1] 2 • 2 Ns(d) 

components according to Definition 5. Denote £ = (x(.), u(.)) and let C be one 

of the connected components of ~(a) Consider all the vertical lines that pass 

through the points of e. We have the following possibilities: 

(a) None of the lines intersects O. 

(b) All intersection points lie on one side of £ (above or below). 

(c) Some line that passes through (x(t-), u(t-')) E £ intersects C on both sides of 
g. 

In the last case let P1 and P2 be the intersection points that are closest to 

(from above and from below, respectively) and let r E (~(2) be a continuous curve 

that connects them. The segment [P1, P2] and F form a closed curve that bounds 

some subset G of the (x, u) plane, which we will call a bay for the curve (. The 

curve g which corresponds to the process of the first type can intersect [P1, P2] 

only once (see Fig. 2). Hence ~ lies in the subset G either for all t >_ [, or for all 

t _< [. This means that for any curve ~ there might be at most two components 

of (~,) where the possibility (c) takes place. 

Further, if a smooth curve F C_ (I)(~21) connects the ends of a vertical segment 

[P1, P2], then it has a point distinct from P1, P2 where 02f/Ou 2 = 0. As we proved 
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above, the number of such points does not exceed N4(d) = (2d - 1)(4d - 3) + 2. 

Denote these points by z l , . . . ,  zv,p <_ N4(d). 

I 

~0 

Fig. 2 
~0)  Now to each admissible trajectory ~ in q,.~ , we associate a symbol a(~) as 

follows: Let C1 , . . . ,  Cn be the connected components of ~(3a). We define ai(~), 

i = 1 , . . . ,  n, to be 0, if the possibilities (a) or (c) are satisfied for Ci and L ai(~) 

is defined to be 0 also in the case (b), if ~ passes under C~. In the case (b), if 

passes above Ci, ai(~) is defined to be 1. 

If ~ starts (ends) in a bay, we define a~+~(£) (an+2(~)) to be the smallest 

number j such that the "vertical tangent" point zj lies on the boundary of this 

bay. If ~ does not start (end) in a bay, #,,+l(g) (a,,+~(~)) is 0. 

LEMMA 4: I / ' a ( ~ l )  ---- a(~2),  then ~1 andS2 are in the same connected component 

Proof: Assume that there is a verticM line x = c, intersecting ~1 and 12 at the 

points P1 and P2, respectively, such that the segment [P1, P2] intersects ~(~). 

Then either ~1 and g2 pass on different sides of the same component Cq, and 

then aq(~l) ~ aq(g2), or they start (end) in different bays, and then they will 

differ in one of their two last coordinates. 

Since, clearly, the number of different symbols o'(£) does not exceed 

2')- (p + 1) 2 <_ 2 N'(d) • [Y4(d) -}- 1] 2, 

where 

N3(d) = (d + 1)(2d + 2), N4(d) = (2d - 1)(4d - 3) + 2, 
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the same upper bound holds for the number of components of ~1 (J, 71 ). 

By Corollary 3, the image of each component can be covered by an interval of 

length 4T2eM'°gs(d)71, hence by Ns(d) intervals of length 4T2eM~°71. Thus all 

the set ~1(J ,7)  can be covered by 

N6(d) = Ns(d)[Nd(d) + 1122 N3(d) ~ 8ad22(d+1)2 

intervals of length 

4T2eM'°71 = 4T2e M'° [(q -f 1)/t/1 cq(m,oT M, o)]l /(q-t-1) . 7q/(q+ l ). 

Theorem 1 is proved, l 

Now we study the structure of the trajectories of the second type. 

LEMMA 5: The boundary of the set D.y(x, u) contains only two types of segments: 

(a) segments of the bounaary '), 
(b) vertical segments tangent to 4 (2). 

Proof: Suppose the contrary: let (~, q), a boundary point of the set D.~(x, u), 

be an internal point for the set 4 (1) and the line x -- ~ is not tangent to the set 

4 (2) (see Fig. 3). Let P1, P2 be the intersection points of the line x = ~ with the 

boundary of the set 4 (1) that are closest to the point (~,~) (one from above and 

one from below). Then there exists an e > 0 such that: 

(a) the segments of the boundary that pass through the points PI, P2 can be 

given by u = ~ l ( X ) ,  u = u 2 ( z ) ,  x E [~ - ~,~-~- ~]; 

(b) the vertical lines x = ( + e and the curves u = ul(x), u = u2(x) bound a 

curvilinear rectangle P~', P~', P~, P~, so that  all the internal points of the 

rectangle are also the internal points of 4 (1) . 

Suppose that x < ~. In order to reach the point (~, r/), a curve of type A that 

connects (x, u) with (~, r/) must intersect the segment [P~', P2'] at some point Q. 

Continue the type A curve after the point Q in the following way: first along 

the vertical line x = ~ - ~, then along the horizontal lines u = 7/4- & In this 

fashion we can cover with type A curves a rectangle centered at ((, r/) - -  and this 

contradicts the premise that (~, 7/) is a boundary point of the set D(x, u). 

THEOREM 3: If  (x(.),u(.) ) is an admissible trajectory of the second type, then 

I x ( l )  - x(o)l < 4T  M'°N (d)71 
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wt~ere 

71 = C27 q/(q+I} and NT(d) = Nh(d)[N4(d) + 1]. 

/ 
,~ ~2 ) I 

I 

ee 

P~ Px P~ 

Fig. 3 

D~, (x, u) 

Proof." If (x(.), u(.)) is a trajectory of the second type, then for some t*, 0 _< 

t* < 1 there holds ~(t*) = 0. Then equation (2) has a stationary solution 

x = x(t*), u = u(t*). Let t; be the first among such points. Applying Lemma 3 

to the trajectories (x(0,  u(t)) and (x - z(t~), u = u(t~)), we have (x(t), u(t)) 

D~,(x(tT),u(t'i) ) for t e [0,t;]. By Lemma 2 we now have 

Ix(0) - x(t~)] _< 2T2eM'°Ns(d)7,. 

Denote tl = sup{rl(z(t) ,u(t)) ~ D.y,(x(t~),u(t;)) for t E [tT,r]}. Then the fol- 

lowing holds: 

(a) Ix(t~) - x(O)l _< tx(t~) - x(t~)l + Ix(t;) - x(O)l _< 4T2eM'°Nh(d)71; 

(h) the point (x([1),u(tl)) lies in one of the vertical tangents to the set ~(72~ ) 

(the proof follows from Lemma 5); 

(c) There exists a t', t~ < t' _< [1, such that ~(t') = 0. 

Indeed, if this was false, then for some sufficiently small ¢ and t E [t~, tl +~] the 

trajectory (x(.), u(.)) would be a type A curve and (x(t), u(t)) E Dr, (x(t~), u(t~)) 

for t E [t~, [1 + ~] which contradicts the choice of [1- 
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Denote t~ = sup{t'l&(t' ) = 0,t '  E ItS,t1]}. For t~ there exists t2 such that 

the point (x(t2), u(t~)) lies in a vertical tangent to the set (~(~) and (x(t), u(t)) E 

DTt(x(t~),u(t~) ) for t E ItS,t2]. Then by Lemma 2 we have 

I x ( ~ )  - x(~l) l  _< Ix(~2) - x ( t ~ ) l - +  Ix(t~) - x ( ~ ) l  _< 4T2eM'°Ns(d)7~. 

Continue the above process. At each step the trajectory (x(.), u(-)) can pass 

from one vertical tangent x = x(tn) to another x = x(tn+~), while 

I~(~.)  - ~(~.+~)1 < 4T2~M'ONs(d)'n. 

Now let f/,, be the set of abscissas of vertical tangents crossed during this 

process till time tn (some of them can be crossed more than once). The last 

inequality shows that 

diam'/n+1 _< d iamf l ,  + 4T2eM~°Ns(d)71. 

Since the eardinality of f~n can never exceed N4(d), we have 

Ix(tp) - x(O)l <_ 4T2eMt°Ns(d)N4(d)7, 

where t-p is the last point of the t,~. (In particular, this means that our trajectory 

can visit only those vertical tangents which axe "near one another".) 

Therefore Ix(l) - x(0)[ _< 4T2eM'°NT(d)71 where Nr(d) = Ns(d)[N4(d) + 1]. 

Theorem 3 is proved. | 

From the Theorems 2 and 3, Theorem 1 of Section 2 follows immediately: 

THEOREM 1: The set /~(J, 7) can be covered by N(d) intervals of length 
4T2eM~°71 , where 

N(d) = N6(d) + 2NT(d) _< (Sd 2 - 9d + 7)3de22(d+l)2 _~ 83d622(d+1)2. 

4. E x a m p l e s  

Next we give examples which show that the bound given in Theorem 1 is essen- 

tially sharp. 
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Example 1: Let Td(x) be a Chebyshev  polynomial  of  degree d: 

Td(x) = cos(darccos x). 

T h e  po lynomia l  Td(x) has  zeros in xk = cos(2k - 1)Tr/2d, k = 1 , . . . , d  and  

e x t r e m a  in xk = cos k~r/d, k = O, 1 , . . . ,  d. 

Set 7'd(X) = Ta(2x - 1) and 

Of  = (u - 7"d(X))(u -- ~'d(X) + ~Td(u)). 
Ou 

The  curve L2 = u - T d ( x ) -  ~Td(u) = 0 lies close to the curve L1 = u - T d ( x )  = 0 

for small  values of  ~ and crosses it in a n points  for 0 < x < 1. The  set 

is shown in Fig. 4. 

Fig. 4 

Define 

yi(x,u)=c[f 
where c > 0 and the funct ion e(x) > 0 will be defined later.  We can assume 

f l ( x , y )  to be  posit ive in the rectangle D = {Ixl _< 2, lul _< 2}. 

For 0 < x < 1 the curves L1 and L2 are divided by the crossing points  into 

d 2 - 1 arcs each, denoted respect ively as t~ i) and t~ i). Consider  all the possible 
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paths obtained by choosing either g~i) or £~i) for each i. There are 2 d2-1 such 

paths. Each of them can become a critical trajectory for a suitable choice of a 

control. 

Indeed, by substituting the explicit equation of such a curve u = ¢(x)  into (2), 

we obtain a solution x = x¢(t)  of the equation 

k = f ( x ,  ¢(x))  

that corresponds to a control u(t) = ¢(x¢(t ) ) .  The pair (x(.), ¢ (x¢(- ) ) )  is critical. 

The time it takes the point (x(t), u(t)) to travel along the arc t~ i) that connects 

the points (x~,ui) and (x~+,,u~+,) is 

z i + t  
dx / 

xi 

Since Ofl/OU < 0 between the arcs g~ i) and g~i), the t ime of passage over the 

upper  arcs is greater than for the lower arcs. 

One can make the difference in passage t ime from (x i, u i) to (x i+1, u i+1), i = 

1 , . . .  ,d  2 - 1 equal to 1/2 i+1 by an appropriate  choice of the function ¢(x). For 

example, set h(x) = e -1/(1-~2) for - 1  < x < 1 and h(x) = 0 for all other values 

of x and let 
d 2 - 1  

i=1 X i + l  - -  $ i  2 

Choose the numbers (i and c so that  

z i + l  r 1 ] 
_ 1 d x [  - 2 i ~ _  1 , i = 1 , . - . , d  2 - 1 .  

I c fa (x , ; }O(x )  ) Cfl(X,;~i,(X)) 

Such a choice of c(x) will not affect the polynomial character of 0f/0.. (We use 

e in this form to simplify computations. More detailed analysis allows one to 

construct the same example with f being a polynomial.) 

Now set f = cl f l  and choose a number cl > 1 so that  the t ime of passage over 

the lower ares from (0, 1) to (1, 1) will be 

1 
dz 1 

7" = ClI--- ~ < -~. 
0 
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For different trajectories ¢ that are glued together from the arcs/I  i) and l (0, 

the point (1,1) will be reached in different times V,p, 

1 

Moreover, by construction, these time moments re divide the interval [r, r + 

1/2cl] into 2 d2-1 equal parts. 

After the point (1,1) we send all the critical trajectories along the curve L1. 

Since all of the 2 d2-] trajectories pass the point (1,1) at different times, they will 

stop at the time t = 1 in different final points whose x coordinates will all be 

distinct and also uniformly distributed, up to a bounded distortion. 

As a result we obtain 2 d2-1 different and "almost uniformly" distributed critical 

values of the functional J(u). The allowing for -y-critical controls gives us as 

/~(J,7) 2d2-1 segments around these critical values. 

Let M(7 , A) be a minimal number of intervals of length 2 7 that cover a set 

A C_ R. Then for 7 > 0 sufficiently small, namely, 3' < 1/2a2, we have 

M(7~, A(J,7))  ~ 2 d'. 

The following example shows how the trajectories of type (c), as described in 

Theorem 1, can appear. 

Example 2: Let (x*,u*), x* > 1, be a point that each of the 2 a~-] critical 

trajectories eventually reaches. We nmltiply the polynomial Of/Ou described 

above by a polynomial 

~ ( x , u )  = g ( x  - x ' , u  - ~,*) 

where 
d 

g(x, u) = 1-[(x - oqu) + M(x d+2 + u d+2) 
i = l  

and M > 0 is sufficiently big (d is even). 

We denote by L3 the set of zeros of the polynomial ~(x, u). The set ¢(1), for 

the function 
Of 2 Of 
O u  - O u  " ~' 

is shown in Fig. 5. 
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Let the critical trajectories that  reach the point (x*, u*) continue along different 

arcs of the curve L3. The parameters  a l , . . . , a d  can be chosen in such a way 

that  all the values of x(1) will be different. Then the number of distinct critical 

values will be 2d. 2 d2-1 . 

By passing to 7-critical controls we obtain for a sufficiently small 7 > 0 

M(7t  , /~(J, 'y))  -,, d - 2  d' . 

Using a similar construction for the beginning of the trajectories one can in- 

crease M(T1,/X(J, 7) by a further factor of d. 

.; ./; I ,. / / i  
,' i t I i , " .  / i 

I . /  / / 1 i / / / / ! , i 7 / / /  , i~l,> l / / ~ / ~ L /  
i t / ,  i ' ~ f  ' .Z/f I ' .1 .  "t I l l  ~'41 . 
/ S . ' ~ ' ~ - ' ' ' -  - -  ~ .~ .d l  I I  - - ' -  . I / 

(' , f . / / // , ,, I .  , i , ' , ' , ,  J ~ ~ - ' ~  l i / ~ - i  / "  

/ / J i i i t i  //U.-." U'//J, 
. \ i  ti_. i l  " " / "  i i  

' 

• , , / / / / / / S / /  

Fig. 5 
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